Signal Amplitude Estimation and Detection from Unlabeled Binary Quantized Samples

نویسندگان

  • Guanyu Wang
  • Jiang Zhu
  • Rick S. Blum
  • Peter Willett
  • Stefano Marano
  • Vincenzo Matta
  • Paolo Braca
چکیده

Signal amplitude estimation and detection from unlabeled quantized binary samples are studied, assuming that the order of the time indexes is completely unknown. First, maximum likelihood (ML) estimators are utilized to estimate both the permutation matrix and unknown signal amplitude under arbitrary, but known signal shape and quantizer thresholds. Sufficient conditions are provided under which an ML estimator can be found in polynomial time and an alternating maximization algorithm is proposed to solve the general problem via good initial estimates. In addition, the statistical identifiability of the model is studied. Furthermore, the generalized likelihood ratio test (GLRT) detector is adopted to detect the presence of signal. In addition, an accurate approximation to the probability of successful permutation matrix recovery is derived, and explicit expressions are provided to reveal the relationship between the number of signal samples and the number of quantizers. Finally, numerical simulations are performed to verify the theoretical results. Index Terms Estimation, detection, permutation, unlabeled sensing, quantization, identifiability, alternating maximization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Likelihood Signal Amplitude Estimation Based on Permuted Blocks of Differently Binary Quantized Observations of a Signal in Noise

Parameter estimation based on binary quantized observations is considered given the estimation system does not know which of a set of quantizers was used, without replacement, for each block of observations. Thus the estimation system receives permutated blocks of quantized samples of a signal in noise with unknown signal amplitude. Maximum likelihood (ML) estimators are utilized to estimate bo...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

Signal detection Using Rational Function Curve Fitting

In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...

متن کامل

Estimation of harmonic interference parameters of surface-NMR signal using an adaptive method and residual signal power

Surface nuclear magnetic resonance (surface-NMR) method is a well-known tool for determining the water-bearing layers and subsurface resistivity structure. Harmonic interference is an inevitable interference in surface-NMR measurements. Accurate estimation of harmonic interference parameters (i.e., fundamental frequency, phase and amplitude) leads to better retrieval of power-line harmonics and...

متن کامل

Adaptive Signal Detection in Auto-Regressive Interference with Gaussian Spectrum

A detector for the case of a radar target with known Doppler and unknown complex amplitude in complex Gaussian noise with unknown parameters has been derived. The detector assumes that the noise is an Auto-Regressive (AR) process with Gaussian autocorrelation function which is a suitable model for ground clutter in most scenarios involving airborne radars. The detector estimates the unknown...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017